RTG4 Next-Generation Radiation-Tolerant FPGAs

Microsemi Space Forum 2015

Ken O’Neill
Director of Marketing, Space and Aviation
Satellite Signal Processing Congestion

- Sensor resolution increasing faster than downlink bandwidth
- Satellites required to perform more on-board processing
- Requires high-density, high-performance payload processing electronics

1. Radiation-Hardened ASICs
 - High speed, high density, low power
 - Large NRE, relatively low volumes
 - Long development time, long fabrication cycle time
 - High risk of schedule and cost over-runs

2. SRAM FPGAs
 - Easy prototyping, reprogrammable
 - Configuration SEU effects require cumbersome mitigation
 - Increases Size, Weight and Power

Existing solutions for satellite on-board processing have high risks
Introducing RTG4 High-Speed RT FPGAs

<table>
<thead>
<tr>
<th>Logic Density</th>
<th>Frequency of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 KLE</td>
<td>300 MHz</td>
</tr>
<tr>
<td>20 KLE</td>
<td>150 KLE</td>
</tr>
<tr>
<td>9 KLE</td>
<td>5 Mbit SRAM</td>
</tr>
<tr>
<td>2 KLE</td>
<td>462 Multipliers</td>
</tr>
<tr>
<td></td>
<td>24 x 3.125 Gb/sec SERDES</td>
</tr>
<tr>
<td></td>
<td>TID > 100 Krad</td>
</tr>
<tr>
<td></td>
<td>SEL immune</td>
</tr>
</tbody>
</table>

RTG4 mitigates risks of ASICs and SRAM FPGAs, and has 20X improvement in signal processing throughput
Why RTG4 is Compelling

- More flexible than an RH ASIC
 - Reprogrammable, no NRE, no cost and schedule risk
- More signal-processing features than any other RT FPGA
 - More registers, combinatorial logic, multiply blocks, and transceivers
 - Lower power, live at power-up, no external boot memory needed
- Radiation enhanced for Geosynchronous Earth Orbit and deep space
 - RTG4 65nm Flash has complete immunity to configuration upsets (SEU)
 - Total ionizing dose (TID) and single event effects (SEE) hardened by design

RTG4 offers groundbreaking features for satellite applications
RTG4 Radiation-Mitigated Architecture

- Total-dose hardening of Flash cells
- Single-event hardening of registers, SRAM, multipliers, PLLs

Comprehensive radiation-mitigated architecture for signal processing applications
RTG4 Resources

<table>
<thead>
<tr>
<th>Resources</th>
<th>RT4G150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Elements (TMR Register + 4-Input C Logic)</td>
<td>151,824</td>
</tr>
<tr>
<td>18x18 Multiply-Accumulate Blocks</td>
<td>462</td>
</tr>
<tr>
<td>RAM Mbits (1.5 Kbit and 24 Kbit Blocks, with ECC)</td>
<td>5.2</td>
</tr>
<tr>
<td>UPROM Kbits</td>
<td>381</td>
</tr>
<tr>
<td>DDR2/3 SDRAM Controller (with ECC)</td>
<td>2x32</td>
</tr>
<tr>
<td>PCI Express Endpoints</td>
<td>2</td>
</tr>
<tr>
<td>Globals</td>
<td>24</td>
</tr>
<tr>
<td>PLLs (Rad Tolerant)</td>
<td>8</td>
</tr>
<tr>
<td>SpaceWire Clock & Data Recovery Circuits</td>
<td>16</td>
</tr>
<tr>
<td>User IO (excluding SERDES)</td>
<td>720</td>
</tr>
<tr>
<td>SERDES lanes (3.125 Gbit/sec)</td>
<td>24</td>
</tr>
<tr>
<td>Hermetic, Ceramic Column-Grid Packages</td>
<td></td>
</tr>
<tr>
<td>CG1657 (Six Sigma Columns)</td>
<td>✓</td>
</tr>
</tbody>
</table>

- RT4G150 is available now in Engineering Samples
- Possible CQFP package – engineering investigation in progress now
RTG4 Radiation Mitigation

- Radiation hardening by design
 - Total ionizing dose (TID) immune to > 125 kRAD
 - Single event latch-up and configuration upset immune
 - Tested to 103 MeV-cm²/mg (facility limit) at 100°C
 - Single event upsets in fabric < 1x10⁻¹¹ errors/bit/day
 - Single event transient mitigation in logic can be enabled/disabled globally or individually for higher performance
TID Mitigation in RTG4 Flash FPGAs

- RTG4 TID-tolerant interconnect
 - RTG4 FPGAs functional after TID > 125 Krad
 - Change in propagation delay ~ 0% after TID > 125 Krad
 - Pass transistor is indirectly coupled to floating gate devices
 - V_T changes in Flash cells don’t change pass transistor prop. delay

![Graph showing propagation delay change vs. total dose](image)

![Diagram of RTG4 Flash FPGA architecture](image)
RTG4 Logic Element Radiation Mitigation

- Dedicated register with efficient triple module redundant (TMR) hardening
- Single event transient (SET) filter mitigates radiation glitches from comb. logic
- Hierarchical routing architecture enables >95% module utilization
RTG4 Mathblock

- 18 x 18 multiplier with advanced accumulate
- High performance for signal processing throughput
- Optional SEU-protected registers on inputs and outputs (including C input)
RTG4 Memory Blocks

- Radiation Tolerant
 - Resistant to multi-bit upset
 - Built-in optional EDAC (SECDED)

- LSRAM – up to 24 KBit
 - Dual-port and two-port options
 - High performance synchronous operation
 - Example usage
 - Large FFT memory

- uRAM – up to 1.5 KBit
 - Three Port Memory
 - Synchronous Write Port
 - Two Asynchronous or Synchronous Read Ports
 - Example usage
 - Folded FIR filters and FFT twiddle factors
RTG4 General Purpose IO

- Single ended standards
 - LVCMOS from 1.2V to 3.3V
 - LVTTL
 - PCI

- Voltage reference standards (600+ Mbps)
 - Includes on-chip termination
 - SSTL2, SSTL18 and SSTL15
 - For DDR2/DDR3 SDRAM memories
 - HSTL18 and HSTL15
 - For SRAM memories

- Differential I/O standards
 - Includes on-chip termination
 - Mini-LVDS, M-LVDS, RSDS, LVPECL
RTG4 Radiation-Tolerant PLL

- Radiation-Tolerant PLLs are used in CCC, SERDES and DDR blocks

- Triple module redundant (TMR) PLL in internal feedback mode
 - Reference clock is fed back to all 3 sub-PLLs independently
 - Sub-PLL is SEL immune

- Single PLL in external feedback mode
 - PLL output travels through clock network and is fed back to PLL
 - Common mode used for clock network delay compensation
 - Only 1 sub-PLL is enabled in this mode
 - Sub-PLL is SEL immune

![PLL Diagram]
Hardened SpaceWire Clock Recovery

- SpaceWire interface used for command-and-control and data
 - Data and Strobe are XORed to recover SpaceWire clock
 - Hardwired and SET protected
 - Delay compensation available to align data and SpaceWire clock
 - 16 SpaceWire Clock Recovery circuits on each RTG4

Unique Microsemi RTG4 Feature
3.125 Gb/sec SERDES

PMA Based on PCIe Gen 1 PHY
Performance 1 to 3.125 Gb/sec
Up to 6 blocks with 4 lanes

PCI Express Protocol x1, x2, x4

FPGA Fabric

64-bit AXI / AHB

4 x16 Pipe
8B/10B Encoding / Decoding

4 x 20-bit EPCS

SRIO or Custom Protocol

802.3 or Custom Protocol

Up To 3.125 Gb/sec

Up To 156MHz
RTG4 Performance

- **FPGA logic**
 - 250 MHz system performance with SET mitigation
 - 300 MHz system performance without SET mitigation

- **DSP mathblock**
 - 250 MHz pipelined performance with SET mitigation
 - 300 MHz pipelined performance without SET mitigation

- **LSRAM24K and uRAM1.5K**
 - > 300 MHz

- **IO**
 - > 600 Mb/sec LVDS and 667 Mb/sec DDR2/3 SDRAM data
 - SERDES > 3.125 Gb/sec
RTG4 Packaging

- Hermetically sealed, ceramic packages
 - Embedded decoupling capacitors
 - Flight models will have Precious Metal Electrode (PME) capacitors
 - Column Grid Array, Ball Grid Array, Land Grid Array
RTG4 Design Ecosystem

- **Libero SoC Design Suite**
 - Synplify Pro® synthesis
 - ModelSim® simulation
 - Power-driven place-and-route
 - SmartPower power analysis
 - SmartTime timing analysis
 - SmartDebug in-circuit FPGA debug

- **Ease of Design Focus**
 - Push button flow - Proceed from synthesis to programming in one click
 - Reduced learning curve
 - Rich IP library & user block support facilitates design reuse
 - Working with IP partners to expand the RTG4 Ecosystem
RTG4 Development Kit
RTG4 Product Availability

- RTG4 devices for space flight applications
 - Engineering Silicon RT4G150 FPGAs: **NOW**
 - Libero SoC Design Software: **NOW**
 - RT4G150 development kit: **NOW**
 - Daisy chain packages: **NOW**
 - MIL-STD-883 class B flight units: First Half 2016
 - QML class Q qualification: End 2016 or Early 2017
 - QML class V qualification: Targeting Late 2017

Ceramic Column Grid Array Package

RT4G150 Development Kit
RTG4 in Satellite Applications
Where RTG4 Adds Value

- Roughly 100 remote sensing satellites > 50Kg each year
 - Each may have up to 8 payload instruments
 - Each instrument may require 1 to 12 RTG4 FPGAs

The number of payload instruments which need the flexibility and performance of RTG4 is growing
RTG4 Delivers High-Speed Signal Processing

- RTG4 satisfies needs primarily in remote sensing payloads
 - Also adds value in digital communication payloads, and in combined telemetry tracking & control (TT&C) and attitude & orbit control (A&OC) systems
- Microsemi products are found in every system on modern satellites
FPGAs in Remote Sensing Payload

RTG4 complements existing Microsemi Radiation Tolerant FPGAs
FPGAs in Remote Sensing Payload

EM RADIATION
Visible, IR, Microwave, Radio Freq., UV, X-Ray
PARTICLE RADIATION
Sub-atomic Particles

RTG4 complements existing Microsemi Radiation Tolerant FPGAs
Timing Products in Remote Sensing Payload

RTG4 complements other Microsemi space products
Space System Managers in Remote Sensing Payload

RTG4 complements other Microsemi space products
Power Products in Remote Sensing Payload

RTG4 complements other Microsemi space products
Microsemi FPGA Space Heritage

- Microsemi Space
 - Broad space portfolio since 1957
 - First FPGAs screened for space in 1992
 - First FPGAs with radiation hardening by process in 1996
 - First FPGAs with radiation hardening by design in 2001

Mars Reconnaissance Orbiter
RTSX-SU on board (2005)

Curiosity (Mars Science Lab)
RTAX on board (2011)

NASA IRIS
RT ProASIC3 on board (2013)
Product Lifetime and Export Control

- **Current RT FPGA products** – RTAX, RTSX, RT ProASIC3
 - Recent investments in QML qualification of class V and EV-flow
 - Plan to maintain supply (No End Of Life) for *at least 10 years*

- **Update on export control**
 - RT FPGAs are no longer controlled under ITAR
 - Export Administration Regulations now apply
 - Managed by U.S. Dept of Commerce
 - All exports require End Use Statement (EUS)
 - An export license may or may not be required
 - Depends on end use and destination country,
 - **New Export Control Classification Numbers (ECCNs)**
 - RTSX-SU 3A001.a.2.c.
 - RTAX-S/SL/DSP 9A515.e
 - RT ProASIC3 3A001.a.2.c.
 - RTG4 9A515.e
Conclusion
RTG4 High-Speed RT FPGAs

- High-bandwidth signal and data processing in radiation applications
- Flexible and reliable alternative to ASICs
- Immune to radiation-induced configuration upsets
- Radiation enhancements suitable for earth orbits and deep space

Solving Signal Processing Congestion in Space Systems

ken.oneill@microsemi.com
minh.u.nguyen@microsemi.com
Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

©2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.